Metamath Proof Explorer


Theorem xlemul1

Description: Extended real version of lemul1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlemul1 A*B*C+ABA𝑒CB𝑒C

Proof

Step Hyp Ref Expression
1 rpxr C+C*
2 rpge0 C+0C
3 1 2 jca C+C*0C
4 xlemul1a A*B*C*0CABA𝑒CB𝑒C
5 4 ex A*B*C*0CABA𝑒CB𝑒C
6 3 5 syl3an3 A*B*C+ABA𝑒CB𝑒C
7 simp1 A*B*C+A*
8 1 3ad2ant3 A*B*C+C*
9 xmulcl A*C*A𝑒C*
10 7 8 9 syl2anc A*B*C+A𝑒C*
11 simp2 A*B*C+B*
12 xmulcl B*C*B𝑒C*
13 11 8 12 syl2anc A*B*C+B𝑒C*
14 rpreccl C+1C+
15 14 3ad2ant3 A*B*C+1C+
16 rpxr 1C+1C*
17 15 16 syl A*B*C+1C*
18 rpge0 1C+01C
19 15 18 syl A*B*C+01C
20 xlemul1a A𝑒C*B𝑒C*1C*01CA𝑒CB𝑒CA𝑒C𝑒1CB𝑒C𝑒1C
21 20 ex A𝑒C*B𝑒C*1C*01CA𝑒CB𝑒CA𝑒C𝑒1CB𝑒C𝑒1C
22 10 13 17 19 21 syl112anc A*B*C+A𝑒CB𝑒CA𝑒C𝑒1CB𝑒C𝑒1C
23 xmulass A*C*1C*A𝑒C𝑒1C=A𝑒C𝑒1C
24 7 8 17 23 syl3anc A*B*C+A𝑒C𝑒1C=A𝑒C𝑒1C
25 rpre C+C
26 25 3ad2ant3 A*B*C+C
27 15 rpred A*B*C+1C
28 rexmul C1CC𝑒1C=C1C
29 26 27 28 syl2anc A*B*C+C𝑒1C=C1C
30 26 recnd A*B*C+C
31 rpne0 C+C0
32 31 3ad2ant3 A*B*C+C0
33 30 32 recidd A*B*C+C1C=1
34 29 33 eqtrd A*B*C+C𝑒1C=1
35 34 oveq2d A*B*C+A𝑒C𝑒1C=A𝑒1
36 xmulrid A*A𝑒1=A
37 7 36 syl A*B*C+A𝑒1=A
38 24 35 37 3eqtrd A*B*C+A𝑒C𝑒1C=A
39 xmulass B*C*1C*B𝑒C𝑒1C=B𝑒C𝑒1C
40 11 8 17 39 syl3anc A*B*C+B𝑒C𝑒1C=B𝑒C𝑒1C
41 34 oveq2d A*B*C+B𝑒C𝑒1C=B𝑒1
42 xmulrid B*B𝑒1=B
43 11 42 syl A*B*C+B𝑒1=B
44 40 41 43 3eqtrd A*B*C+B𝑒C𝑒1C=B
45 38 44 breq12d A*B*C+A𝑒C𝑒1CB𝑒C𝑒1CAB
46 22 45 sylibd A*B*C+A𝑒CB𝑒CAB
47 6 46 impbid A*B*C+ABA𝑒CB𝑒C