| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|
| 2 |
|
simpr |
|
| 3 |
|
xrleloe |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
simpllr |
|
| 6 |
|
elxr |
|
| 7 |
5 6
|
sylib |
|
| 8 |
|
simplrr |
|
| 9 |
|
simprll |
|
| 10 |
|
simprlr |
|
| 11 |
|
simprr |
|
| 12 |
|
simplrl |
|
| 13 |
|
lemul1 |
|
| 14 |
9 10 11 12 13
|
syl112anc |
|
| 15 |
8 14
|
mpbid |
|
| 16 |
|
rexmul |
|
| 17 |
9 11 16
|
syl2anc |
|
| 18 |
|
rexmul |
|
| 19 |
10 11 18
|
syl2anc |
|
| 20 |
15 17 19
|
3brtr4d |
|
| 21 |
20
|
expr |
|
| 22 |
|
simprl |
|
| 23 |
|
0re |
|
| 24 |
|
lttri4 |
|
| 25 |
22 23 24
|
sylancl |
|
| 26 |
|
simplll |
|
| 27 |
26
|
adantr |
|
| 28 |
|
xmulpnf1n |
|
| 29 |
27 28
|
sylan |
|
| 30 |
|
simpllr |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
pnfxr |
|
| 34 |
|
xmulcl |
|
| 35 |
32 33 34
|
sylancl |
|
| 36 |
|
mnfle |
|
| 37 |
35 36
|
syl |
|
| 38 |
29 37
|
eqbrtrd |
|
| 39 |
38
|
ex |
|
| 40 |
|
oveq1 |
|
| 41 |
|
xmul02 |
|
| 42 |
33 41
|
ax-mp |
|
| 43 |
40 42
|
eqtrdi |
|
| 44 |
43
|
adantl |
|
| 45 |
|
simplrr |
|
| 46 |
|
breq1 |
|
| 47 |
45 46
|
syl5ibcom |
|
| 48 |
|
simprr |
|
| 49 |
|
leloe |
|
| 50 |
23 48 49
|
sylancr |
|
| 51 |
47 50
|
sylibd |
|
| 52 |
51
|
imp |
|
| 53 |
|
pnfge |
|
| 54 |
1 53
|
ax-mp |
|
| 55 |
|
xmulpnf1 |
|
| 56 |
31 55
|
sylan |
|
| 57 |
54 56
|
breqtrrid |
|
| 58 |
|
xrleid |
|
| 59 |
1 58
|
ax-mp |
|
| 60 |
59 42
|
breqtrri |
|
| 61 |
|
simpr |
|
| 62 |
61
|
oveq1d |
|
| 63 |
60 62
|
breqtrid |
|
| 64 |
57 63
|
jaodan |
|
| 65 |
52 64
|
syldan |
|
| 66 |
44 65
|
eqbrtrd |
|
| 67 |
66
|
ex |
|
| 68 |
|
pnfge |
|
| 69 |
33 68
|
ax-mp |
|
| 70 |
26
|
adantr |
|
| 71 |
|
simprr |
|
| 72 |
|
xmulpnf1 |
|
| 73 |
70 71 72
|
syl2anc |
|
| 74 |
30
|
adantr |
|
| 75 |
|
ltletr |
|
| 76 |
23 75
|
mp3an1 |
|
| 77 |
76
|
adantl |
|
| 78 |
45 77
|
mpan2d |
|
| 79 |
78
|
impr |
|
| 80 |
74 79 55
|
syl2anc |
|
| 81 |
73 80
|
breq12d |
|
| 82 |
69 81
|
mpbiri |
|
| 83 |
82
|
expr |
|
| 84 |
39 67 83
|
3jaod |
|
| 85 |
25 84
|
mpd |
|
| 86 |
|
oveq2 |
|
| 87 |
|
oveq2 |
|
| 88 |
86 87
|
breq12d |
|
| 89 |
85 88
|
syl5ibrcom |
|
| 90 |
|
nltmnf |
|
| 91 |
1 90
|
ax-mp |
|
| 92 |
|
breq2 |
|
| 93 |
91 92
|
mtbiri |
|
| 94 |
93
|
con2i |
|
| 95 |
94
|
ad2antrl |
|
| 96 |
95
|
adantr |
|
| 97 |
96
|
pm2.21d |
|
| 98 |
21 89 97
|
3jaod |
|
| 99 |
7 98
|
mpd |
|
| 100 |
99
|
anassrs |
|
| 101 |
|
xmulcl |
|
| 102 |
101
|
adantlr |
|
| 103 |
102
|
ad2antrr |
|
| 104 |
|
pnfge |
|
| 105 |
103 104
|
syl |
|
| 106 |
|
oveq1 |
|
| 107 |
|
xmulpnf2 |
|
| 108 |
107
|
ad2ant2lr |
|
| 109 |
106 108
|
sylan9eqr |
|
| 110 |
105 109
|
breqtrrd |
|
| 111 |
110
|
adantlr |
|
| 112 |
|
simplrr |
|
| 113 |
|
simpr |
|
| 114 |
26
|
adantr |
|
| 115 |
|
mnfle |
|
| 116 |
114 115
|
syl |
|
| 117 |
113 116
|
eqbrtrd |
|
| 118 |
|
xrletri3 |
|
| 119 |
118
|
ad3antrrr |
|
| 120 |
112 117 119
|
mpbir2and |
|
| 121 |
120
|
oveq1d |
|
| 122 |
|
xmulcl |
|
| 123 |
122
|
adantll |
|
| 124 |
123
|
ad2antrr |
|
| 125 |
|
xrleid |
|
| 126 |
124 125
|
syl |
|
| 127 |
121 126
|
eqbrtrd |
|
| 128 |
127
|
adantlr |
|
| 129 |
|
elxr |
|
| 130 |
30 129
|
sylib |
|
| 131 |
130
|
adantr |
|
| 132 |
100 111 128 131
|
mpjao3dan |
|
| 133 |
|
simplrr |
|
| 134 |
30
|
adantr |
|
| 135 |
|
pnfge |
|
| 136 |
134 135
|
syl |
|
| 137 |
|
simpr |
|
| 138 |
136 137
|
breqtrrd |
|
| 139 |
118
|
ad3antrrr |
|
| 140 |
133 138 139
|
mpbir2and |
|
| 141 |
140
|
oveq1d |
|
| 142 |
123 125
|
syl |
|
| 143 |
142
|
ad2antrr |
|
| 144 |
141 143
|
eqbrtrd |
|
| 145 |
|
oveq1 |
|
| 146 |
|
xmulmnf2 |
|
| 147 |
146
|
ad2ant2lr |
|
| 148 |
145 147
|
sylan9eqr |
|
| 149 |
123
|
ad2antrr |
|
| 150 |
|
mnfle |
|
| 151 |
149 150
|
syl |
|
| 152 |
148 151
|
eqbrtrd |
|
| 153 |
|
elxr |
|
| 154 |
26 153
|
sylib |
|
| 155 |
132 144 152 154
|
mpjao3dan |
|
| 156 |
155
|
exp32 |
|
| 157 |
|
xmul01 |
|
| 158 |
157
|
ad2antrr |
|
| 159 |
|
xmul01 |
|
| 160 |
159
|
ad2antlr |
|
| 161 |
158 160
|
breq12d |
|
| 162 |
59 161
|
mpbiri |
|
| 163 |
|
oveq2 |
|
| 164 |
|
oveq2 |
|
| 165 |
163 164
|
breq12d |
|
| 166 |
162 165
|
syl5ibcom |
|
| 167 |
166
|
a1dd |
|
| 168 |
156 167
|
jaod |
|
| 169 |
4 168
|
sylbid |
|
| 170 |
169
|
expimpd |
|
| 171 |
170
|
3impia |
|
| 172 |
171
|
imp |
|