Metamath Proof Explorer


Theorem xlemul2

Description: Extended real version of lemul2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlemul2 A * B * C + A B C 𝑒 A C 𝑒 B

Proof

Step Hyp Ref Expression
1 xlemul1 A * B * C + A B A 𝑒 C B 𝑒 C
2 simp1 A * B * C + A *
3 rpxr C + C *
4 3 3ad2ant3 A * B * C + C *
5 xmulcom A * C * A 𝑒 C = C 𝑒 A
6 2 4 5 syl2anc A * B * C + A 𝑒 C = C 𝑒 A
7 simp2 A * B * C + B *
8 xmulcom B * C * B 𝑒 C = C 𝑒 B
9 7 4 8 syl2anc A * B * C + B 𝑒 C = C 𝑒 B
10 6 9 breq12d A * B * C + A 𝑒 C B 𝑒 C C 𝑒 A C 𝑒 B
11 1 10 bitrd A * B * C + A B C 𝑒 A C 𝑒 B