Metamath Proof Explorer


Theorem xlemul2a

Description: Extended real version of lemul2a . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion xlemul2a A * B * C * 0 C A B C 𝑒 A C 𝑒 B

Proof

Step Hyp Ref Expression
1 xlemul1a A * B * C * 0 C A B A 𝑒 C B 𝑒 C
2 simpl1 A * B * C * 0 C A B A *
3 simpl3l A * B * C * 0 C A B C *
4 xmulcom A * C * A 𝑒 C = C 𝑒 A
5 2 3 4 syl2anc A * B * C * 0 C A B A 𝑒 C = C 𝑒 A
6 simpl2 A * B * C * 0 C A B B *
7 xmulcom B * C * B 𝑒 C = C 𝑒 B
8 6 3 7 syl2anc A * B * C * 0 C A B B 𝑒 C = C 𝑒 B
9 1 5 8 3brtr3d A * B * C * 0 C A B C 𝑒 A C 𝑒 B