Metamath Proof Explorer


Theorem xleneg

Description: Extended real version of leneg . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleneg A*B*ABBA

Proof

Step Hyp Ref Expression
1 xltneg B*A*B<AA<B
2 1 ancoms A*B*B<AA<B
3 2 notbid A*B*¬B<A¬A<B
4 xrlenlt A*B*AB¬B<A
5 xnegcl B*B*
6 xnegcl A*A*
7 xrlenlt B*A*BA¬A<B
8 5 6 7 syl2anr A*B*BA¬A<B
9 3 4 8 3bitr4d A*B*ABBA