Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xleneg
Next ⟩
xlt0neg1
Metamath Proof Explorer
Ascii
Unicode
Theorem
xleneg
Description:
Extended real version of
leneg
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xleneg
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
↔
−
B
≤
−
A
Proof
Step
Hyp
Ref
Expression
1
xltneg
⊢
B
∈
ℝ
*
∧
A
∈
ℝ
*
→
B
<
A
↔
−
A
<
−
B
2
1
ancoms
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
<
A
↔
−
A
<
−
B
3
2
notbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
¬
B
<
A
↔
¬
−
A
<
−
B
4
xrlenlt
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
↔
¬
B
<
A
5
xnegcl
⊢
B
∈
ℝ
*
→
−
B
∈
ℝ
*
6
xnegcl
⊢
A
∈
ℝ
*
→
−
A
∈
ℝ
*
7
xrlenlt
⊢
−
B
∈
ℝ
*
∧
−
A
∈
ℝ
*
→
−
B
≤
−
A
↔
¬
−
A
<
−
B
8
5
6
7
syl2anr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
B
≤
−
A
↔
¬
−
A
<
−
B
9
3
4
8
3bitr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
↔
−
B
≤
−
A