Metamath Proof Explorer


Theorem xleneg

Description: Extended real version of leneg . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xleneg A * B * A B B A

Proof

Step Hyp Ref Expression
1 xltneg B * A * B < A A < B
2 1 ancoms A * B * B < A A < B
3 2 notbid A * B * ¬ B < A ¬ A < B
4 xrlenlt A * B * A B ¬ B < A
5 xnegcl B * B *
6 xnegcl A * A *
7 xrlenlt B * A * B A ¬ A < B
8 5 6 7 syl2anr A * B * B A ¬ A < B
9 3 4 8 3bitr4d A * B * A B B A