Metamath Proof Explorer


Theorem xlenegcon1

Description: Extended real version of lenegcon1 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon1 A * B * A B B A

Proof

Step Hyp Ref Expression
1 xnegcl A * A *
2 xleneg A * B * A B B A
3 1 2 sylan A * B * A B B A
4 xnegneg A * A = A
5 4 breq2d A * B A B A
6 5 adantr A * B * B A B A
7 3 6 bitrd A * B * A B B A