Metamath Proof Explorer


Theorem xlenegcon2

Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon2 A * B * A B B A

Proof

Step Hyp Ref Expression
1 xnegcl B * B *
2 xleneg A * B * A B B A
3 1 2 sylan2 A * B * A B B A
4 xnegneg B * B = B
5 4 breq1d B * B A B A
6 5 adantl A * B * B A B A
7 3 6 bitrd A * B * A B B A