Metamath Proof Explorer


Theorem xlt0neg1

Description: Extended real version of lt0neg1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlt0neg1 A * A < 0 0 < A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 xltneg A * 0 * A < 0 0 < A
3 1 2 mpan2 A * A < 0 0 < A
4 xneg0 0 = 0
5 4 breq1i 0 < A 0 < A
6 3 5 bitrdi A * A < 0 0 < A