Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xlt0neg2
Next ⟩
xle0neg1
Metamath Proof Explorer
Ascii
Unicode
Theorem
xlt0neg2
Description:
Extended real version of
lt0neg2
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xlt0neg2
⊢
A
∈
ℝ
*
→
0
<
A
↔
−
A
<
0
Proof
Step
Hyp
Ref
Expression
1
0xr
⊢
0
∈
ℝ
*
2
xltneg
⊢
0
∈
ℝ
*
∧
A
∈
ℝ
*
→
0
<
A
↔
−
A
<
−
0
3
1
2
mpan
⊢
A
∈
ℝ
*
→
0
<
A
↔
−
A
<
−
0
4
xneg0
⊢
−
0
=
0
5
4
breq2i
⊢
−
A
<
−
0
↔
−
A
<
0
6
3
5
bitrdi
⊢
A
∈
ℝ
*
→
0
<
A
↔
−
A
<
0