Metamath Proof Explorer


Theorem xlt0neg2

Description: Extended real version of lt0neg2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlt0neg2 A * 0 < A A < 0

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 xltneg 0 * A * 0 < A A < 0
3 1 2 mpan A * 0 < A A < 0
4 xneg0 0 = 0
5 4 breq2i A < 0 A < 0
6 3 5 bitrdi A * 0 < A A < 0