Metamath Proof Explorer


Theorem xlt2add

Description: Extended real version of lt2add . Note that ltleadd , which has weaker assumptions, is not true for the extended reals (since 0 + +oo < 1 + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xlt2add A * B * C * D * A < C B < D A + 𝑒 B < C + 𝑒 D

Proof

Step Hyp Ref Expression
1 xaddcl A * B * A + 𝑒 B *
2 1 3ad2ant1 A * B * C * D * A < C B < D A + 𝑒 B *
3 2 adantr A * B * C * D * A < C B < D A D A + 𝑒 B *
4 simp1l A * B * C * D * A < C B < D A *
5 simp2r A * B * C * D * A < C B < D D *
6 xaddcl A * D * A + 𝑒 D *
7 4 5 6 syl2anc A * B * C * D * A < C B < D A + 𝑒 D *
8 7 adantr A * B * C * D * A < C B < D A D A + 𝑒 D *
9 xaddcl C * D * C + 𝑒 D *
10 9 3ad2ant2 A * B * C * D * A < C B < D C + 𝑒 D *
11 10 adantr A * B * C * D * A < C B < D A D C + 𝑒 D *
12 simp3r A * B * C * D * A < C B < D B < D
13 12 adantr A * B * C * D * A < C B < D A D B < D
14 simp1r A * B * C * D * A < C B < D B *
15 14 adantr A * B * C * D * A < C B < D A D B *
16 5 adantr A * B * C * D * A < C B < D A D D *
17 simprl A * B * C * D * A < C B < D A D A
18 xltadd2 B * D * A B < D A + 𝑒 B < A + 𝑒 D
19 15 16 17 18 syl3anc A * B * C * D * A < C B < D A D B < D A + 𝑒 B < A + 𝑒 D
20 13 19 mpbid A * B * C * D * A < C B < D A D A + 𝑒 B < A + 𝑒 D
21 simp3l A * B * C * D * A < C B < D A < C
22 21 adantr A * B * C * D * A < C B < D A D A < C
23 4 adantr A * B * C * D * A < C B < D A D A *
24 simp2l A * B * C * D * A < C B < D C *
25 24 adantr A * B * C * D * A < C B < D A D C *
26 simprr A * B * C * D * A < C B < D A D D
27 xltadd1 A * C * D A < C A + 𝑒 D < C + 𝑒 D
28 23 25 26 27 syl3anc A * B * C * D * A < C B < D A D A < C A + 𝑒 D < C + 𝑒 D
29 22 28 mpbid A * B * C * D * A < C B < D A D A + 𝑒 D < C + 𝑒 D
30 3 8 11 20 29 xrlttrd A * B * C * D * A < C B < D A D A + 𝑒 B < C + 𝑒 D
31 30 anassrs A * B * C * D * A < C B < D A D A + 𝑒 B < C + 𝑒 D
32 pnfxr +∞ *
33 32 a1i A * B * C * D * A < C B < D +∞ *
34 pnfge C * C +∞
35 24 34 syl A * B * C * D * A < C B < D C +∞
36 4 24 33 21 35 xrltletrd A * B * C * D * A < C B < D A < +∞
37 nltpnft A * A = +∞ ¬ A < +∞
38 37 necon2abid A * A < +∞ A +∞
39 4 38 syl A * B * C * D * A < C B < D A < +∞ A +∞
40 36 39 mpbid A * B * C * D * A < C B < D A +∞
41 pnfge D * D +∞
42 5 41 syl A * B * C * D * A < C B < D D +∞
43 14 5 33 12 42 xrltletrd A * B * C * D * A < C B < D B < +∞
44 nltpnft B * B = +∞ ¬ B < +∞
45 44 necon2abid B * B < +∞ B +∞
46 14 45 syl A * B * C * D * A < C B < D B < +∞ B +∞
47 43 46 mpbid A * B * C * D * A < C B < D B +∞
48 xaddnepnf A * A +∞ B * B +∞ A + 𝑒 B +∞
49 4 40 14 47 48 syl22anc A * B * C * D * A < C B < D A + 𝑒 B +∞
50 nltpnft A + 𝑒 B * A + 𝑒 B = +∞ ¬ A + 𝑒 B < +∞
51 50 necon2abid A + 𝑒 B * A + 𝑒 B < +∞ A + 𝑒 B +∞
52 2 51 syl A * B * C * D * A < C B < D A + 𝑒 B < +∞ A + 𝑒 B +∞
53 49 52 mpbird A * B * C * D * A < C B < D A + 𝑒 B < +∞
54 53 adantr A * B * C * D * A < C B < D D = +∞ A + 𝑒 B < +∞
55 oveq2 D = +∞ C + 𝑒 D = C + 𝑒 +∞
56 mnfxr −∞ *
57 56 a1i A * B * C * D * A < C B < D −∞ *
58 mnfle A * −∞ A
59 4 58 syl A * B * C * D * A < C B < D −∞ A
60 57 4 24 59 21 xrlelttrd A * B * C * D * A < C B < D −∞ < C
61 ngtmnft C * C = −∞ ¬ −∞ < C
62 61 necon2abid C * −∞ < C C −∞
63 24 62 syl A * B * C * D * A < C B < D −∞ < C C −∞
64 60 63 mpbid A * B * C * D * A < C B < D C −∞
65 xaddpnf1 C * C −∞ C + 𝑒 +∞ = +∞
66 24 64 65 syl2anc A * B * C * D * A < C B < D C + 𝑒 +∞ = +∞
67 55 66 sylan9eqr A * B * C * D * A < C B < D D = +∞ C + 𝑒 D = +∞
68 54 67 breqtrrd A * B * C * D * A < C B < D D = +∞ A + 𝑒 B < C + 𝑒 D
69 68 adantlr A * B * C * D * A < C B < D A D = +∞ A + 𝑒 B < C + 𝑒 D
70 mnfle B * −∞ B
71 14 70 syl A * B * C * D * A < C B < D −∞ B
72 57 14 5 71 12 xrlelttrd A * B * C * D * A < C B < D −∞ < D
73 ngtmnft D * D = −∞ ¬ −∞ < D
74 73 necon2abid D * −∞ < D D −∞
75 5 74 syl A * B * C * D * A < C B < D −∞ < D D −∞
76 72 75 mpbid A * B * C * D * A < C B < D D −∞
77 76 a1d A * B * C * D * A < C B < D ¬ A + 𝑒 B < C + 𝑒 D D −∞
78 77 necon4bd A * B * C * D * A < C B < D D = −∞ A + 𝑒 B < C + 𝑒 D
79 78 imp A * B * C * D * A < C B < D D = −∞ A + 𝑒 B < C + 𝑒 D
80 79 adantlr A * B * C * D * A < C B < D A D = −∞ A + 𝑒 B < C + 𝑒 D
81 elxr D * D D = +∞ D = −∞
82 5 81 sylib A * B * C * D * A < C B < D D D = +∞ D = −∞
83 82 adantr A * B * C * D * A < C B < D A D D = +∞ D = −∞
84 31 69 80 83 mpjao3dan A * B * C * D * A < C B < D A A + 𝑒 B < C + 𝑒 D
85 40 a1d A * B * C * D * A < C B < D ¬ A + 𝑒 B < C + 𝑒 D A +∞
86 85 necon4bd A * B * C * D * A < C B < D A = +∞ A + 𝑒 B < C + 𝑒 D
87 86 imp A * B * C * D * A < C B < D A = +∞ A + 𝑒 B < C + 𝑒 D
88 oveq1 A = −∞ A + 𝑒 B = −∞ + 𝑒 B
89 xaddmnf2 B * B +∞ −∞ + 𝑒 B = −∞
90 14 47 89 syl2anc A * B * C * D * A < C B < D −∞ + 𝑒 B = −∞
91 88 90 sylan9eqr A * B * C * D * A < C B < D A = −∞ A + 𝑒 B = −∞
92 xaddnemnf C * C −∞ D * D −∞ C + 𝑒 D −∞
93 24 64 5 76 92 syl22anc A * B * C * D * A < C B < D C + 𝑒 D −∞
94 ngtmnft C + 𝑒 D * C + 𝑒 D = −∞ ¬ −∞ < C + 𝑒 D
95 94 necon2abid C + 𝑒 D * −∞ < C + 𝑒 D C + 𝑒 D −∞
96 10 95 syl A * B * C * D * A < C B < D −∞ < C + 𝑒 D C + 𝑒 D −∞
97 93 96 mpbird A * B * C * D * A < C B < D −∞ < C + 𝑒 D
98 97 adantr A * B * C * D * A < C B < D A = −∞ −∞ < C + 𝑒 D
99 91 98 eqbrtrd A * B * C * D * A < C B < D A = −∞ A + 𝑒 B < C + 𝑒 D
100 elxr A * A A = +∞ A = −∞
101 4 100 sylib A * B * C * D * A < C B < D A A = +∞ A = −∞
102 84 87 99 101 mpjao3dan A * B * C * D * A < C B < D A + 𝑒 B < C + 𝑒 D
103 102 3expia A * B * C * D * A < C B < D A + 𝑒 B < C + 𝑒 D