Metamath Proof Explorer


Theorem xltadd1

Description: Extended real version of ltadd1 . (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xltadd1 A * B * C A < B A + 𝑒 C < B + 𝑒 C

Proof

Step Hyp Ref Expression
1 xleadd1 B * A * C B A B + 𝑒 C A + 𝑒 C
2 1 3com12 A * B * C B A B + 𝑒 C A + 𝑒 C
3 2 notbid A * B * C ¬ B A ¬ B + 𝑒 C A + 𝑒 C
4 xrltnle A * B * A < B ¬ B A
5 4 3adant3 A * B * C A < B ¬ B A
6 simp1 A * B * C A *
7 rexr C C *
8 7 3ad2ant3 A * B * C C *
9 xaddcl A * C * A + 𝑒 C *
10 6 8 9 syl2anc A * B * C A + 𝑒 C *
11 simp2 A * B * C B *
12 xaddcl B * C * B + 𝑒 C *
13 11 8 12 syl2anc A * B * C B + 𝑒 C *
14 xrltnle A + 𝑒 C * B + 𝑒 C * A + 𝑒 C < B + 𝑒 C ¬ B + 𝑒 C A + 𝑒 C
15 10 13 14 syl2anc A * B * C A + 𝑒 C < B + 𝑒 C ¬ B + 𝑒 C A + 𝑒 C
16 3 5 15 3bitr4d A * B * C A < B A + 𝑒 C < B + 𝑒 C