Metamath Proof Explorer


Theorem xltadd2

Description: Extended real version of ltadd2 . (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xltadd2 A * B * C A < B C + 𝑒 A < C + 𝑒 B

Proof

Step Hyp Ref Expression
1 xltadd1 A * B * C A < B A + 𝑒 C < B + 𝑒 C
2 rexr C C *
3 xaddcom A * C * A + 𝑒 C = C + 𝑒 A
4 3 3adant2 A * B * C * A + 𝑒 C = C + 𝑒 A
5 xaddcom B * C * B + 𝑒 C = C + 𝑒 B
6 5 3adant1 A * B * C * B + 𝑒 C = C + 𝑒 B
7 4 6 breq12d A * B * C * A + 𝑒 C < B + 𝑒 C C + 𝑒 A < C + 𝑒 B
8 2 7 syl3an3 A * B * C A + 𝑒 C < B + 𝑒 C C + 𝑒 A < C + 𝑒 B
9 1 8 bitrd A * B * C A < B C + 𝑒 A < C + 𝑒 B