Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xltadd2
Next ⟩
xaddge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
xltadd2
Description:
Extended real version of
ltadd2
.
(Contributed by
Mario Carneiro
, 23-Aug-2015)
Ref
Expression
Assertion
xltadd2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
→
A
<
B
↔
C
+
𝑒
A
<
C
+
𝑒
B
Proof
Step
Hyp
Ref
Expression
1
xltadd1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
→
A
<
B
↔
A
+
𝑒
C
<
B
+
𝑒
C
2
rexr
⊢
C
∈
ℝ
→
C
∈
ℝ
*
3
xaddcom
⊢
A
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
+
𝑒
C
=
C
+
𝑒
A
4
3
3adant2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
+
𝑒
C
=
C
+
𝑒
A
5
xaddcom
⊢
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
+
𝑒
C
=
C
+
𝑒
B
6
5
3adant1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
+
𝑒
C
=
C
+
𝑒
B
7
4
6
breq12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
+
𝑒
C
<
B
+
𝑒
C
↔
C
+
𝑒
A
<
C
+
𝑒
B
8
2
7
syl3an3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
→
A
+
𝑒
C
<
B
+
𝑒
C
↔
C
+
𝑒
A
<
C
+
𝑒
B
9
1
8
bitrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
→
A
<
B
↔
C
+
𝑒
A
<
C
+
𝑒
B