Metamath Proof Explorer


Theorem xltmul2

Description: Extended real version of ltmul2 . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion xltmul2 A * B * C + A < B C 𝑒 A < C 𝑒 B

Proof

Step Hyp Ref Expression
1 xltmul1 A * B * C + A < B A 𝑒 C < B 𝑒 C
2 rpxr C + C *
3 xmulcom A * C * A 𝑒 C = C 𝑒 A
4 3 3adant2 A * B * C * A 𝑒 C = C 𝑒 A
5 xmulcom B * C * B 𝑒 C = C 𝑒 B
6 5 3adant1 A * B * C * B 𝑒 C = C 𝑒 B
7 4 6 breq12d A * B * C * A 𝑒 C < B 𝑒 C C 𝑒 A < C 𝑒 B
8 2 7 syl3an3 A * B * C + A 𝑒 C < B 𝑒 C C 𝑒 A < C 𝑒 B
9 1 8 bitrd A * B * C + A < B C 𝑒 A < C 𝑒 B