Metamath Proof Explorer


Theorem xltnegi

Description: Forward direction of xltneg . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xltnegi A * B * A < B B < A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 elxr B * B B = +∞ B = −∞
3 ltneg A B A < B B < A
4 rexneg B B = B
5 rexneg A A = A
6 4 5 breqan12rd A B B < A B < A
7 3 6 bitr4d A B A < B B < A
8 7 biimpd A B A < B B < A
9 xnegeq B = +∞ B = +∞
10 xnegpnf +∞ = −∞
11 9 10 eqtrdi B = +∞ B = −∞
12 11 adantl A B = +∞ B = −∞
13 renegcl A A
14 5 13 eqeltrd A A
15 14 mnfltd A −∞ < A
16 15 adantr A B = +∞ −∞ < A
17 12 16 eqbrtrd A B = +∞ B < A
18 17 a1d A B = +∞ A < B B < A
19 simpr A B = −∞ B = −∞
20 19 breq2d A B = −∞ A < B A < −∞
21 rexr A A *
22 nltmnf A * ¬ A < −∞
23 21 22 syl A ¬ A < −∞
24 23 adantr A B = −∞ ¬ A < −∞
25 24 pm2.21d A B = −∞ A < −∞ B < A
26 20 25 sylbid A B = −∞ A < B B < A
27 8 18 26 3jaodan A B B = +∞ B = −∞ A < B B < A
28 2 27 sylan2b A B * A < B B < A
29 28 expimpd A B * A < B B < A
30 simpl A = +∞ B * A = +∞
31 30 breq1d A = +∞ B * A < B +∞ < B
32 pnfnlt B * ¬ +∞ < B
33 32 adantl A = +∞ B * ¬ +∞ < B
34 33 pm2.21d A = +∞ B * +∞ < B B < A
35 31 34 sylbid A = +∞ B * A < B B < A
36 35 expimpd A = +∞ B * A < B B < A
37 breq1 A = −∞ A < B −∞ < B
38 37 anbi2d A = −∞ B * A < B B * −∞ < B
39 renegcl B B
40 4 39 eqeltrd B B
41 40 adantr B −∞ < B B
42 41 ltpnfd B −∞ < B B < +∞
43 11 adantr B = +∞ −∞ < B B = −∞
44 mnfltpnf −∞ < +∞
45 43 44 eqbrtrdi B = +∞ −∞ < B B < +∞
46 breq2 B = −∞ −∞ < B −∞ < −∞
47 mnfxr −∞ *
48 nltmnf −∞ * ¬ −∞ < −∞
49 47 48 ax-mp ¬ −∞ < −∞
50 49 pm2.21i −∞ < −∞ B < +∞
51 46 50 syl6bi B = −∞ −∞ < B B < +∞
52 51 imp B = −∞ −∞ < B B < +∞
53 42 45 52 3jaoian B B = +∞ B = −∞ −∞ < B B < +∞
54 2 53 sylanb B * −∞ < B B < +∞
55 xnegeq A = −∞ A = −∞
56 xnegmnf −∞ = +∞
57 55 56 eqtrdi A = −∞ A = +∞
58 57 breq2d A = −∞ B < A B < +∞
59 54 58 syl5ibr A = −∞ B * −∞ < B B < A
60 38 59 sylbid A = −∞ B * A < B B < A
61 29 36 60 3jaoi A A = +∞ A = −∞ B * A < B B < A
62 1 61 sylbi A * B * A < B B < A
63 62 3impib A * B * A < B B < A