Metamath Proof Explorer


Theorem xmetdmdm

Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xmetdmdm D ∞Met X X = dom dom D

Proof

Step Hyp Ref Expression
1 xmetf D ∞Met X D : X × X *
2 1 fdmd D ∞Met X dom D = X × X
3 2 dmeqd D ∞Met X dom dom D = dom X × X
4 dmxpid dom X × X = X
5 3 4 eqtr2di D ∞Met X X = dom dom D