Metamath Proof Explorer


Theorem xmetec

Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj , infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 ˙ = D -1
Assertion xmetec D ∞Met X P X P ˙ = P ball D +∞

Proof

Step Hyp Ref Expression
1 xmeter.1 ˙ = D -1
2 1 xmeterval D ∞Met X P ˙ x P X x X P D x
3 3anass P X x X P D x P X x X P D x
4 3 baib P X P X x X P D x x X P D x
5 2 4 sylan9bb D ∞Met X P X P ˙ x x X P D x
6 vex x V
7 6 a1i D ∞Met X x V
8 elecg x V P X x P ˙ P ˙ x
9 7 8 sylan D ∞Met X P X x P ˙ P ˙ x
10 xblpnf D ∞Met X P X x P ball D +∞ x X P D x
11 5 9 10 3bitr4d D ∞Met X P X x P ˙ x P ball D +∞
12 11 eqrdv D ∞Met X P X P ˙ = P ball D +∞