Metamath Proof Explorer


Theorem xmeteq0

Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmeteq0 D ∞Met X A X B X A D B = 0 A = B

Proof

Step Hyp Ref Expression
1 elfvdm D ∞Met X X dom ∞Met
2 isxmet X dom ∞Met D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
3 1 2 syl D ∞Met X D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
4 3 ibi D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
5 simpl x D y = 0 x = y z X x D y z D x + 𝑒 z D y x D y = 0 x = y
6 5 2ralimi x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y x X y X x D y = 0 x = y
7 4 6 simpl2im D ∞Met X x X y X x D y = 0 x = y
8 oveq1 x = A x D y = A D y
9 8 eqeq1d x = A x D y = 0 A D y = 0
10 eqeq1 x = A x = y A = y
11 9 10 bibi12d x = A x D y = 0 x = y A D y = 0 A = y
12 oveq2 y = B A D y = A D B
13 12 eqeq1d y = B A D y = 0 A D B = 0
14 eqeq2 y = B A = y A = B
15 13 14 bibi12d y = B A D y = 0 A = y A D B = 0 A = B
16 11 15 rspc2v A X B X x X y X x D y = 0 x = y A D B = 0 A = B
17 7 16 syl5com D ∞Met X A X B X A D B = 0 A = B
18 17 3impib D ∞Met X A X B X A D B = 0 A = B