Metamath Proof Explorer


Theorem xmetf

Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetf D ∞Met X D : X × X *

Proof

Step Hyp Ref Expression
1 elfvdm D ∞Met X X dom ∞Met
2 isxmet X dom ∞Met D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
3 1 2 syl D ∞Met X D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
4 3 ibi D ∞Met X D : X × X * x X y X x D y = 0 x = y z X x D y z D x + 𝑒 z D y
5 4 simpld D ∞Met X D : X × X *