Metamath Proof Explorer


Theorem xmetgt0

Description: The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetgt0 D ∞Met X A X B X A B 0 < A D B

Proof

Step Hyp Ref Expression
1 xmetge0 D ∞Met X A X B X 0 A D B
2 1 biantrud D ∞Met X A X B X A D B 0 A D B 0 0 A D B
3 xmetcl D ∞Met X A X B X A D B *
4 0xr 0 *
5 xrletri3 A D B * 0 * A D B = 0 A D B 0 0 A D B
6 3 4 5 sylancl D ∞Met X A X B X A D B = 0 A D B 0 0 A D B
7 2 6 bitr4d D ∞Met X A X B X A D B 0 A D B = 0
8 xrlenlt A D B * 0 * A D B 0 ¬ 0 < A D B
9 3 4 8 sylancl D ∞Met X A X B X A D B 0 ¬ 0 < A D B
10 xmeteq0 D ∞Met X A X B X A D B = 0 A = B
11 7 9 10 3bitr3d D ∞Met X A X B X ¬ 0 < A D B A = B
12 11 necon1abid D ∞Met X A X B X A B 0 < A D B