Metamath Proof Explorer


Theorem xmetlecl

Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetlecl D ∞Met X A X B X C A D B C A D B

Proof

Step Hyp Ref Expression
1 xmetcl D ∞Met X A X B X A D B *
2 1 3expb D ∞Met X A X B X A D B *
3 2 3adant3 D ∞Met X A X B X C A D B C A D B *
4 simp3l D ∞Met X A X B X C A D B C C
5 xmetge0 D ∞Met X A X B X 0 A D B
6 5 3expb D ∞Met X A X B X 0 A D B
7 6 3adant3 D ∞Met X A X B X C A D B C 0 A D B
8 simp3r D ∞Met X A X B X C A D B C A D B C
9 xrrege0 A D B * C 0 A D B A D B C A D B
10 3 4 7 8 9 syl22anc D ∞Met X A X B X C A D B C A D B