Metamath Proof Explorer


Theorem xmetpsmet

Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion xmetpsmet D ∞Met X D PsMet X

Proof

Step Hyp Ref Expression
1 xmetf D ∞Met X D : X × X *
2 xmet0 D ∞Met X x X x D x = 0
3 3anrot z X x X y X x X y X z X
4 xmettri2 D ∞Met X z X x X y X x D y z D x + 𝑒 z D y
5 3 4 sylan2br D ∞Met X x X y X z X x D y z D x + 𝑒 z D y
6 5 3anassrs D ∞Met X x X y X z X x D y z D x + 𝑒 z D y
7 6 ralrimiva D ∞Met X x X y X z X x D y z D x + 𝑒 z D y
8 7 ralrimiva D ∞Met X x X y X z X x D y z D x + 𝑒 z D y
9 2 8 jca D ∞Met X x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
10 9 ralrimiva D ∞Met X x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
11 elfvex D ∞Met X X V
12 ispsmet X V D PsMet X D : X × X * x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
13 11 12 syl D ∞Met X D PsMet X D : X × X * x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
14 1 10 13 mpbir2and D ∞Met X D PsMet X