Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
xmetpsmet
Next ⟩
xmettpos
Metamath Proof Explorer
Ascii
Unicode
Theorem
xmetpsmet
Description:
An extended metric is a pseudometric.
(Contributed by
Thierry Arnoux
, 7-Feb-2018)
Ref
Expression
Assertion
xmetpsmet
⊢
D
∈
∞Met
⁡
X
→
D
∈
PsMet
⁡
X
Proof
Step
Hyp
Ref
Expression
1
xmetf
⊢
D
∈
∞Met
⁡
X
→
D
:
X
×
X
⟶
ℝ
*
2
xmet0
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
→
x
D
x
=
0
3
3anrot
⊢
z
∈
X
∧
x
∈
X
∧
y
∈
X
↔
x
∈
X
∧
y
∈
X
∧
z
∈
X
4
xmettri2
⊢
D
∈
∞Met
⁡
X
∧
z
∈
X
∧
x
∈
X
∧
y
∈
X
→
x
D
y
≤
z
D
x
+
𝑒
z
D
y
5
3
4
sylan2br
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
∧
y
∈
X
∧
z
∈
X
→
x
D
y
≤
z
D
x
+
𝑒
z
D
y
6
5
3anassrs
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
∧
y
∈
X
∧
z
∈
X
→
x
D
y
≤
z
D
x
+
𝑒
z
D
y
7
6
ralrimiva
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
∧
y
∈
X
→
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
8
7
ralrimiva
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
→
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
9
2
8
jca
⊢
D
∈
∞Met
⁡
X
∧
x
∈
X
→
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
10
9
ralrimiva
⊢
D
∈
∞Met
⁡
X
→
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
11
elfvex
⊢
D
∈
∞Met
⁡
X
→
X
∈
V
12
ispsmet
⊢
X
∈
V
→
D
∈
PsMet
⁡
X
↔
D
:
X
×
X
⟶
ℝ
*
∧
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
13
11
12
syl
⊢
D
∈
∞Met
⁡
X
→
D
∈
PsMet
⁡
X
↔
D
:
X
×
X
⟶
ℝ
*
∧
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
14
1
10
13
mpbir2and
⊢
D
∈
∞Met
⁡
X
→
D
∈
PsMet
⁡
X