Metamath Proof Explorer


Theorem xmetres

Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion xmetres D ∞Met X D R × R ∞Met X R

Proof

Step Hyp Ref Expression
1 xmetf D ∞Met X D : X × X *
2 fdm D : X × X * dom D = X × X
3 metreslem dom D = X × X D R × R = D X R × X R
4 1 2 3 3syl D ∞Met X D R × R = D X R × X R
5 inss1 X R X
6 xmetres2 D ∞Met X X R X D X R × X R ∞Met X R
7 5 6 mpan2 D ∞Met X D X R × X R ∞Met X R
8 4 7 eqeltrd D ∞Met X D R × R ∞Met X R