Metamath Proof Explorer


Theorem xmetrtri

Description: One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Assertion xmetrtri D ∞Met X A X B X C X A D C + 𝑒 B D C A D B

Proof

Step Hyp Ref Expression
1 3ancomb A X B X C X A X C X B X
2 xmettri D ∞Met X A X C X B X A D C A D B + 𝑒 B D C
3 1 2 sylan2b D ∞Met X A X B X C X A D C A D B + 𝑒 B D C
4 xmetcl D ∞Met X A X C X A D C *
5 4 3adant3r2 D ∞Met X A X B X C X A D C *
6 xmetcl D ∞Met X B X C X B D C *
7 6 3adant3r1 D ∞Met X A X B X C X B D C *
8 xmetcl D ∞Met X A X B X A D B *
9 8 3adant3r3 D ∞Met X A X B X C X A D B *
10 xmetge0 D ∞Met X A X C X 0 A D C
11 10 3adant3r2 D ∞Met X A X B X C X 0 A D C
12 xmetge0 D ∞Met X B X C X 0 B D C
13 12 3adant3r1 D ∞Met X A X B X C X 0 B D C
14 ge0nemnf B D C * 0 B D C B D C −∞
15 7 13 14 syl2anc D ∞Met X A X B X C X B D C −∞
16 xmetge0 D ∞Met X A X B X 0 A D B
17 16 3adant3r3 D ∞Met X A X B X C X 0 A D B
18 xlesubadd A D C * B D C * A D B * 0 A D C B D C −∞ 0 A D B A D C + 𝑒 B D C A D B A D C A D B + 𝑒 B D C
19 5 7 9 11 15 17 18 syl33anc D ∞Met X A X B X C X A D C + 𝑒 B D C A D B A D C A D B + 𝑒 B D C
20 3 19 mpbird D ∞Met X A X B X C X A D C + 𝑒 B D C A D B