Metamath Proof Explorer


Theorem xmetsym

Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetsym D ∞Met X A X B X A D B = B D A

Proof

Step Hyp Ref Expression
1 xmetcl D ∞Met X A X B X A D B *
2 xmetcl D ∞Met X B X A X B D A *
3 2 3com23 D ∞Met X A X B X B D A *
4 simp1 D ∞Met X A X B X D ∞Met X
5 simp3 D ∞Met X A X B X B X
6 simp2 D ∞Met X A X B X A X
7 xmettri2 D ∞Met X B X A X B X A D B B D A + 𝑒 B D B
8 4 5 6 5 7 syl13anc D ∞Met X A X B X A D B B D A + 𝑒 B D B
9 xmet0 D ∞Met X B X B D B = 0
10 9 3adant2 D ∞Met X A X B X B D B = 0
11 10 oveq2d D ∞Met X A X B X B D A + 𝑒 B D B = B D A + 𝑒 0
12 2 xaddid1d D ∞Met X B X A X B D A + 𝑒 0 = B D A
13 12 3com23 D ∞Met X A X B X B D A + 𝑒 0 = B D A
14 11 13 eqtrd D ∞Met X A X B X B D A + 𝑒 B D B = B D A
15 8 14 breqtrd D ∞Met X A X B X A D B B D A
16 xmettri2 D ∞Met X A X B X A X B D A A D B + 𝑒 A D A
17 4 6 5 6 16 syl13anc D ∞Met X A X B X B D A A D B + 𝑒 A D A
18 xmet0 D ∞Met X A X A D A = 0
19 18 3adant3 D ∞Met X A X B X A D A = 0
20 19 oveq2d D ∞Met X A X B X A D B + 𝑒 A D A = A D B + 𝑒 0
21 1 xaddid1d D ∞Met X A X B X A D B + 𝑒 0 = A D B
22 20 21 eqtrd D ∞Met X A X B X A D B + 𝑒 A D A = A D B
23 17 22 breqtrd D ∞Met X A X B X B D A A D B
24 1 3 15 23 xrletrid D ∞Met X A X B X A D B = B D A