Metamath Proof Explorer


Theorem xmettpos

Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmettpos D ∞Met X tpos D = D

Proof

Step Hyp Ref Expression
1 xmetsym D ∞Met X x X y X x D y = y D x
2 1 3expb D ∞Met X x X y X x D y = y D x
3 2 ralrimivva D ∞Met X x X y X x D y = y D x
4 xmetf D ∞Met X D : X × X *
5 ffn D : X × X * D Fn X × X
6 tpossym D Fn X × X tpos D = D x X y X x D y = y D x
7 4 5 6 3syl D ∞Met X tpos D = D x X y X x D y = y D x
8 3 7 mpbird D ∞Met X tpos D = D