Metamath Proof Explorer


Theorem xmettri3

Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmettri3 D ∞Met X A X B X C X A D B A D C + 𝑒 B D C

Proof

Step Hyp Ref Expression
1 xmettri D ∞Met X A X B X C X A D B A D C + 𝑒 C D B
2 xmetsym D ∞Met X B X C X B D C = C D B
3 2 3adant3r1 D ∞Met X A X B X C X B D C = C D B
4 3 oveq2d D ∞Met X A X B X C X A D C + 𝑒 B D C = A D C + 𝑒 C D B
5 1 4 breqtrrd D ∞Met X A X B X C X A D B A D C + 𝑒 B D C