Metamath Proof Explorer


Theorem xmetunirn

Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion xmetunirn Dran∞MetD∞MetdomdomD

Proof

Step Hyp Ref Expression
1 ovex *x×xV
2 1 rabex d*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdzV
3 df-xmet ∞Met=xVd*x×x|yxzxydz=0y=zwxydzwdy+𝑒wdz
4 2 3 fnmpti ∞MetFnV
5 fnunirn ∞MetFnVDran∞MetxVD∞Metx
6 4 5 ax-mp Dran∞MetxVD∞Metx
7 id D∞MetxD∞Metx
8 xmetdmdm D∞Metxx=domdomD
9 8 fveq2d D∞Metx∞Metx=∞MetdomdomD
10 7 9 eleqtrd D∞MetxD∞MetdomdomD
11 10 rexlimivw xVD∞MetxD∞MetdomdomD
12 6 11 sylbi Dran∞MetD∞MetdomdomD
13 fvssunirn ∞MetdomdomDran∞Met
14 13 sseli D∞MetdomdomDDran∞Met
15 12 14 impbii Dran∞MetD∞MetdomdomD