Metamath Proof Explorer


Theorem xmscl

Description: Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion xmscl M ∞MetSp A X B X A D B *

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 ovres A X B X A D X × X B = A D B
4 3 3adant1 M ∞MetSp A X B X A D X × X B = A D B
5 1 2 xmsxmet2 M ∞MetSp D X × X ∞Met X
6 xmetcl D X × X ∞Met X A X B X A D X × X B *
7 5 6 syl3an1 M ∞MetSp A X B X A D X × X B *
8 4 7 eqeltrrd M ∞MetSp A X B X A D B *