Metamath Proof Explorer


Theorem xmseq0

Description: The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion xmseq0 M ∞MetSp A X B X A D B = 0 A = B

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 ovres A X B X A D X × X B = A D B
4 3 3adant1 M ∞MetSp A X B X A D X × X B = A D B
5 4 eqeq1d M ∞MetSp A X B X A D X × X B = 0 A D B = 0
6 1 2 xmsxmet2 M ∞MetSp D X × X ∞Met X
7 xmeteq0 D X × X ∞Met X A X B X A D X × X B = 0 A = B
8 6 7 syl3an1 M ∞MetSp A X B X A D X × X B = 0 A = B
9 5 8 bitr3d M ∞MetSp A X B X A D B = 0 A = B