Metamath Proof Explorer


Theorem xmsge0

Description: The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion xmsge0 M ∞MetSp A X B X 0 A D B

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 1 2 xmsxmet2 M ∞MetSp D X × X ∞Met X
4 xmetge0 D X × X ∞Met X A X B X 0 A D X × X B
5 3 4 syl3an1 M ∞MetSp A X B X 0 A D X × X B
6 ovres A X B X A D X × X B = A D B
7 6 3adant1 M ∞MetSp A X B X A D X × X B = A D B
8 5 7 breqtrd M ∞MetSp A X B X 0 A D B