Metamath Proof Explorer


Theorem xmspropd

Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses xmspropd.1 φ B = Base K
xmspropd.2 φ B = Base L
xmspropd.3 φ dist K B × B = dist L B × B
xmspropd.4 φ TopOpen K = TopOpen L
Assertion xmspropd φ K ∞MetSp L ∞MetSp

Proof

Step Hyp Ref Expression
1 xmspropd.1 φ B = Base K
2 xmspropd.2 φ B = Base L
3 xmspropd.3 φ dist K B × B = dist L B × B
4 xmspropd.4 φ TopOpen K = TopOpen L
5 1 2 eqtr3d φ Base K = Base L
6 5 4 tpspropd φ K TopSp L TopSp
7 1 sqxpeqd φ B × B = Base K × Base K
8 7 reseq2d φ dist K B × B = dist K Base K × Base K
9 3 8 eqtr3d φ dist L B × B = dist K Base K × Base K
10 2 sqxpeqd φ B × B = Base L × Base L
11 10 reseq2d φ dist L B × B = dist L Base L × Base L
12 9 11 eqtr3d φ dist K Base K × Base K = dist L Base L × Base L
13 12 fveq2d φ MetOpen dist K Base K × Base K = MetOpen dist L Base L × Base L
14 4 13 eqeq12d φ TopOpen K = MetOpen dist K Base K × Base K TopOpen L = MetOpen dist L Base L × Base L
15 6 14 anbi12d φ K TopSp TopOpen K = MetOpen dist K Base K × Base K L TopSp TopOpen L = MetOpen dist L Base L × Base L
16 eqid TopOpen K = TopOpen K
17 eqid Base K = Base K
18 eqid dist K Base K × Base K = dist K Base K × Base K
19 16 17 18 isxms K ∞MetSp K TopSp TopOpen K = MetOpen dist K Base K × Base K
20 eqid TopOpen L = TopOpen L
21 eqid Base L = Base L
22 eqid dist L Base L × Base L = dist L Base L × Base L
23 20 21 22 isxms L ∞MetSp L TopSp TopOpen L = MetOpen dist L Base L × Base L
24 15 19 23 3bitr4g φ K ∞MetSp L ∞MetSp