Metamath Proof Explorer


Theorem xmssym

Description: The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion xmssym M ∞MetSp A X B X A D B = B D A

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 1 2 xmsxmet2 M ∞MetSp D X × X ∞Met X
4 xmetsym D X × X ∞Met X A X B X A D X × X B = B D X × X A
5 3 4 syl3an1 M ∞MetSp A X B X A D X × X B = B D X × X A
6 simp2 M ∞MetSp A X B X A X
7 simp3 M ∞MetSp A X B X B X
8 6 7 ovresd M ∞MetSp A X B X A D X × X B = A D B
9 7 6 ovresd M ∞MetSp A X B X B D X × X A = B D A
10 5 8 9 3eqtr3d M ∞MetSp A X B X A D B = B D A