Metamath Proof Explorer


Theorem xmsxmet2

Description: The distance function, suitably truncated, is an extended metric on X . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X = Base M
mscl.d D = dist M
Assertion xmsxmet2 M ∞MetSp D X × X ∞Met X

Proof

Step Hyp Ref Expression
1 mscl.x X = Base M
2 mscl.d D = dist M
3 2 reseq1i D X × X = dist M X × X
4 1 3 xmsxmet M ∞MetSp D X × X ∞Met X