Metamath Proof Explorer


Theorem xmul02

Description: Extended real version of mul02 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmul02 A * 0 𝑒 A = 0

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 xmulcom 0 * A * 0 𝑒 A = A 𝑒 0
3 1 2 mpan A * 0 𝑒 A = A 𝑒 0
4 xmul01 A * A 𝑒 0 = 0
5 3 4 eqtrd A * 0 𝑒 A = 0