Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xmulasslem2
Next ⟩
xmulgt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
xmulasslem2
Description:
Lemma for
xmulass
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xmulasslem2
⊢
0
<
A
∧
A
=
−∞
→
φ
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
A
=
−∞
→
0
<
A
↔
0
<
−∞
2
0xr
⊢
0
∈
ℝ
*
3
nltmnf
⊢
0
∈
ℝ
*
→
¬
0
<
−∞
4
2
3
ax-mp
⊢
¬
0
<
−∞
5
4
pm2.21i
⊢
0
<
−∞
→
φ
6
1
5
syl6bi
⊢
A
=
−∞
→
0
<
A
→
φ
7
6
impcom
⊢
0
<
A
∧
A
=
−∞
→
φ