Metamath Proof Explorer


Theorem xmulasslem2

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulasslem2 0 < A A = −∞ φ

Proof

Step Hyp Ref Expression
1 breq2 A = −∞ 0 < A 0 < −∞
2 0xr 0 *
3 nltmnf 0 * ¬ 0 < −∞
4 2 3 ax-mp ¬ 0 < −∞
5 4 pm2.21i 0 < −∞ φ
6 1 5 syl6bi A = −∞ 0 < A φ
7 6 impcom 0 < A A = −∞ φ