Metamath Proof Explorer


Theorem xmulcl

Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulcl A * B * A 𝑒 B *

Proof

Step Hyp Ref Expression
1 xmulf 𝑒 : * × * *
2 1 fovcl A * B * A 𝑒 B *