Metamath Proof Explorer


Theorem xmulcld

Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses xnegcld.1 φ A *
xaddcld.2 φ B *
Assertion xmulcld φ A 𝑒 B *

Proof

Step Hyp Ref Expression
1 xnegcld.1 φ A *
2 xaddcld.2 φ B *
3 xmulcl A * B * A 𝑒 B *
4 1 2 3 syl2anc φ A 𝑒 B *