Metamath Proof Explorer


Theorem xmulge0

Description: Extended real version of mulge0 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulge0 A * 0 A B * 0 B 0 A 𝑒 B

Proof

Step Hyp Ref Expression
1 xmulgt0 A * 0 < A B * 0 < B 0 < A 𝑒 B
2 1 an4s A * B * 0 < A 0 < B 0 < A 𝑒 B
3 0xr 0 *
4 xmulcl A * B * A 𝑒 B *
5 4 adantr A * B * 0 < A 0 < B A 𝑒 B *
6 xrltle 0 * A 𝑒 B * 0 < A 𝑒 B 0 A 𝑒 B
7 3 5 6 sylancr A * B * 0 < A 0 < B 0 < A 𝑒 B 0 A 𝑒 B
8 2 7 mpd A * B * 0 < A 0 < B 0 A 𝑒 B
9 8 ex A * B * 0 < A 0 < B 0 A 𝑒 B
10 9 ad2ant2r A * 0 A B * 0 B 0 < A 0 < B 0 A 𝑒 B
11 10 impl A * 0 A B * 0 B 0 < A 0 < B 0 A 𝑒 B
12 0le0 0 0
13 oveq2 0 = B A 𝑒 0 = A 𝑒 B
14 13 eqcomd 0 = B A 𝑒 B = A 𝑒 0
15 xmul01 A * A 𝑒 0 = 0
16 15 ad2antrr A * 0 A B * 0 B A 𝑒 0 = 0
17 14 16 sylan9eqr A * 0 A B * 0 B 0 = B A 𝑒 B = 0
18 12 17 breqtrrid A * 0 A B * 0 B 0 = B 0 A 𝑒 B
19 18 adantlr A * 0 A B * 0 B 0 < A 0 = B 0 A 𝑒 B
20 xrleloe 0 * B * 0 B 0 < B 0 = B
21 3 20 mpan B * 0 B 0 < B 0 = B
22 21 biimpa B * 0 B 0 < B 0 = B
23 22 ad2antlr A * 0 A B * 0 B 0 < A 0 < B 0 = B
24 11 19 23 mpjaodan A * 0 A B * 0 B 0 < A 0 A 𝑒 B
25 oveq1 0 = A 0 𝑒 B = A 𝑒 B
26 25 eqcomd 0 = A A 𝑒 B = 0 𝑒 B
27 xmul02 B * 0 𝑒 B = 0
28 27 ad2antrl A * 0 A B * 0 B 0 𝑒 B = 0
29 26 28 sylan9eqr A * 0 A B * 0 B 0 = A A 𝑒 B = 0
30 12 29 breqtrrid A * 0 A B * 0 B 0 = A 0 A 𝑒 B
31 xrleloe 0 * A * 0 A 0 < A 0 = A
32 3 31 mpan A * 0 A 0 < A 0 = A
33 32 biimpa A * 0 A 0 < A 0 = A
34 33 adantr A * 0 A B * 0 B 0 < A 0 = A
35 24 30 34 mpjaodan A * 0 A B * 0 B 0 A 𝑒 B