| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmulgt0 |  | 
						
							| 2 | 1 | an4s |  | 
						
							| 3 |  | 0xr |  | 
						
							| 4 |  | xmulcl |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | xrltle |  | 
						
							| 7 | 3 5 6 | sylancr |  | 
						
							| 8 | 2 7 | mpd |  | 
						
							| 9 | 8 | ex |  | 
						
							| 10 | 9 | ad2ant2r |  | 
						
							| 11 | 10 | impl |  | 
						
							| 12 |  | 0le0 |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | eqcomd |  | 
						
							| 15 |  | xmul01 |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 | 14 16 | sylan9eqr |  | 
						
							| 18 | 12 17 | breqtrrid |  | 
						
							| 19 | 18 | adantlr |  | 
						
							| 20 |  | xrleloe |  | 
						
							| 21 | 3 20 | mpan |  | 
						
							| 22 | 21 | biimpa |  | 
						
							| 23 | 22 | ad2antlr |  | 
						
							| 24 | 11 19 23 | mpjaodan |  | 
						
							| 25 |  | oveq1 |  | 
						
							| 26 | 25 | eqcomd |  | 
						
							| 27 |  | xmul02 |  | 
						
							| 28 | 27 | ad2antrl |  | 
						
							| 29 | 26 28 | sylan9eqr |  | 
						
							| 30 | 12 29 | breqtrrid |  | 
						
							| 31 |  | xrleloe |  | 
						
							| 32 | 3 31 | mpan |  | 
						
							| 33 | 32 | biimpa |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 24 30 34 | mpjaodan |  |