Metamath Proof Explorer


Theorem xmulgt0

Description: Extended real version of mulgt0 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulgt0 A * 0 < A B * 0 < B 0 < A 𝑒 B

Proof

Step Hyp Ref Expression
1 simpr A * 0 < A 0 < A
2 simpr B * 0 < B 0 < B
3 1 2 anim12i A * 0 < A B * 0 < B 0 < A 0 < B
4 mulgt0 A 0 < A B 0 < B 0 < A B
5 4 an4s A B 0 < A 0 < B 0 < A B
6 5 ancoms 0 < A 0 < B A B 0 < A B
7 rexmul A B A 𝑒 B = A B
8 7 adantl 0 < A 0 < B A B A 𝑒 B = A B
9 6 8 breqtrrd 0 < A 0 < B A B 0 < A 𝑒 B
10 3 9 sylan A * 0 < A B * 0 < B A B 0 < A 𝑒 B
11 10 anassrs A * 0 < A B * 0 < B A B 0 < A 𝑒 B
12 0ltpnf 0 < +∞
13 oveq2 B = +∞ A 𝑒 B = A 𝑒 +∞
14 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
15 14 adantr A * 0 < A B * 0 < B A 𝑒 +∞ = +∞
16 13 15 sylan9eqr A * 0 < A B * 0 < B B = +∞ A 𝑒 B = +∞
17 12 16 breqtrrid A * 0 < A B * 0 < B B = +∞ 0 < A 𝑒 B
18 17 adantlr A * 0 < A B * 0 < B A B = +∞ 0 < A 𝑒 B
19 simplrr A * 0 < A B * 0 < B A 0 < B
20 xmulasslem2 0 < B B = −∞ 0 < A 𝑒 B
21 19 20 sylan A * 0 < A B * 0 < B A B = −∞ 0 < A 𝑒 B
22 simprl A * 0 < A B * 0 < B B *
23 elxr B * B B = +∞ B = −∞
24 22 23 sylib A * 0 < A B * 0 < B B B = +∞ B = −∞
25 24 adantr A * 0 < A B * 0 < B A B B = +∞ B = −∞
26 11 18 21 25 mpjao3dan A * 0 < A B * 0 < B A 0 < A 𝑒 B
27 oveq1 A = +∞ A 𝑒 B = +∞ 𝑒 B
28 xmulpnf2 B * 0 < B +∞ 𝑒 B = +∞
29 28 adantl A * 0 < A B * 0 < B +∞ 𝑒 B = +∞
30 27 29 sylan9eqr A * 0 < A B * 0 < B A = +∞ A 𝑒 B = +∞
31 12 30 breqtrrid A * 0 < A B * 0 < B A = +∞ 0 < A 𝑒 B
32 xmulasslem2 0 < A A = −∞ 0 < A 𝑒 B
33 32 ad4ant24 A * 0 < A B * 0 < B A = −∞ 0 < A 𝑒 B
34 simpll A * 0 < A B * 0 < B A *
35 elxr A * A A = +∞ A = −∞
36 34 35 sylib A * 0 < A B * 0 < B A A = +∞ A = −∞
37 26 31 33 36 mpjao3dan A * 0 < A B * 0 < B 0 < A 𝑒 B