Metamath Proof Explorer


Theorem xmulid1

Description: Extended real version of mulid1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulid1 A * A 𝑒 1 = A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 1re 1
3 rexmul A 1 A 𝑒 1 = A 1
4 2 3 mpan2 A A 𝑒 1 = A 1
5 ax-1rid A A 1 = A
6 4 5 eqtrd A A 𝑒 1 = A
7 1xr 1 *
8 0lt1 0 < 1
9 xmulpnf2 1 * 0 < 1 +∞ 𝑒 1 = +∞
10 7 8 9 mp2an +∞ 𝑒 1 = +∞
11 oveq1 A = +∞ A 𝑒 1 = +∞ 𝑒 1
12 id A = +∞ A = +∞
13 10 11 12 3eqtr4a A = +∞ A 𝑒 1 = A
14 xmulmnf2 1 * 0 < 1 −∞ 𝑒 1 = −∞
15 7 8 14 mp2an −∞ 𝑒 1 = −∞
16 oveq1 A = −∞ A 𝑒 1 = −∞ 𝑒 1
17 id A = −∞ A = −∞
18 15 16 17 3eqtr4a A = −∞ A 𝑒 1 = A
19 6 13 18 3jaoi A A = +∞ A = −∞ A 𝑒 1 = A
20 1 19 sylbi A * A 𝑒 1 = A