Metamath Proof Explorer


Theorem xmulid2

Description: Extended real version of mulid2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulid2 A * 1 𝑒 A = A

Proof

Step Hyp Ref Expression
1 1xr 1 *
2 xmulcom 1 * A * 1 𝑒 A = A 𝑒 1
3 1 2 mpan A * 1 𝑒 A = A 𝑒 1
4 xmulid1 A * A 𝑒 1 = A
5 3 4 eqtrd A * 1 𝑒 A = A