Metamath Proof Explorer


Theorem xmulmnf2

Description: Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulmnf2 A * 0 < A −∞ 𝑒 A = −∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞ *
2 xmulcom −∞ * A * −∞ 𝑒 A = A 𝑒 −∞
3 1 2 mpan A * −∞ 𝑒 A = A 𝑒 −∞
4 3 adantr A * 0 < A −∞ 𝑒 A = A 𝑒 −∞
5 xmulmnf1 A * 0 < A A 𝑒 −∞ = −∞
6 4 5 eqtrd A * 0 < A −∞ 𝑒 A = −∞