Metamath Proof Explorer


Theorem xmulneg2

Description: Extended real version of mulneg2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulneg2 A * B * A 𝑒 B = A 𝑒 B

Proof

Step Hyp Ref Expression
1 xmulneg1 B * A * B 𝑒 A = B 𝑒 A
2 1 ancoms A * B * B 𝑒 A = B 𝑒 A
3 xnegcl B * B *
4 xmulcom A * B * A 𝑒 B = B 𝑒 A
5 3 4 sylan2 A * B * A 𝑒 B = B 𝑒 A
6 xmulcom A * B * A 𝑒 B = B 𝑒 A
7 xnegeq A 𝑒 B = B 𝑒 A A 𝑒 B = B 𝑒 A
8 6 7 syl A * B * A 𝑒 B = B 𝑒 A
9 2 5 8 3eqtr4d A * B * A 𝑒 B = A 𝑒 B