Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xneg11
Next ⟩
xltnegi
Metamath Proof Explorer
Ascii
Unicode
Theorem
xneg11
Description:
Extended real version of
neg11
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xneg11
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
=
−
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
xnegeq
⊢
−
A
=
−
B
→
−
−
A
=
−
−
B
2
xnegneg
⊢
A
∈
ℝ
*
→
−
−
A
=
A
3
xnegneg
⊢
B
∈
ℝ
*
→
−
−
B
=
B
4
2
3
eqeqan12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
−
A
=
−
−
B
↔
A
=
B
5
1
4
imbitrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
=
−
B
→
A
=
B
6
xnegeq
⊢
A
=
B
→
−
A
=
−
B
7
5
6
impbid1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
=
−
B
↔
A
=
B