Metamath Proof Explorer


Theorem xneg11

Description: Extended real version of neg11 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xneg11 A * B * A = B A = B

Proof

Step Hyp Ref Expression
1 xnegeq A = B A = B
2 xnegneg A * A = A
3 xnegneg B * B = B
4 2 3 eqeqan12d A * B * A = B A = B
5 1 4 syl5ib A * B * A = B A = B
6 xnegeq A = B A = B
7 5 6 impbid1 A * B * A = B A = B