Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xnegcl
Next ⟩
xnegneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
xnegcl
Description:
Closure of extended real negative.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xnegcl
⊢
A
∈
ℝ
*
→
−
A
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
elxr
⊢
A
∈
ℝ
*
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
2
rexneg
⊢
A
∈
ℝ
→
−
A
=
−
A
3
renegcl
⊢
A
∈
ℝ
→
−
A
∈
ℝ
4
2
3
eqeltrd
⊢
A
∈
ℝ
→
−
A
∈
ℝ
5
4
rexrd
⊢
A
∈
ℝ
→
−
A
∈
ℝ
*
6
xnegeq
⊢
A
=
+∞
→
−
A
=
−
+∞
7
xnegpnf
⊢
−
+∞
=
−∞
8
mnfxr
⊢
−∞
∈
ℝ
*
9
7
8
eqeltri
⊢
−
+∞
∈
ℝ
*
10
6
9
eqeltrdi
⊢
A
=
+∞
→
−
A
∈
ℝ
*
11
xnegeq
⊢
A
=
−∞
→
−
A
=
−
−∞
12
xnegmnf
⊢
−
−∞
=
+∞
13
pnfxr
⊢
+∞
∈
ℝ
*
14
12
13
eqeltri
⊢
−
−∞
∈
ℝ
*
15
11
14
eqeltrdi
⊢
A
=
−∞
→
−
A
∈
ℝ
*
16
5
10
15
3jaoi
⊢
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
→
−
A
∈
ℝ
*
17
1
16
sylbi
⊢
A
∈
ℝ
*
→
−
A
∈
ℝ
*