Metamath Proof Explorer


Theorem xnegcl

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegcl A * A *

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 rexneg A A = A
3 renegcl A A
4 2 3 eqeltrd A A
5 4 rexrd A A *
6 xnegeq A = +∞ A = +∞
7 xnegpnf +∞ = −∞
8 mnfxr −∞ *
9 7 8 eqeltri +∞ *
10 6 9 eqeltrdi A = +∞ A *
11 xnegeq A = −∞ A = −∞
12 xnegmnf −∞ = +∞
13 pnfxr +∞ *
14 12 13 eqeltri −∞ *
15 11 14 eqeltrdi A = −∞ A *
16 5 10 15 3jaoi A A = +∞ A = −∞ A *
17 1 16 sylbi A * A *