Metamath Proof Explorer


Theorem xnegex

Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegex A V

Proof

Step Hyp Ref Expression
1 df-xneg A = if A = +∞ −∞ if A = −∞ +∞ A
2 mnfxr −∞ *
3 2 elexi −∞ V
4 pnfex +∞ V
5 negex A V
6 4 5 ifex if A = −∞ +∞ A V
7 3 6 ifex if A = +∞ −∞ if A = −∞ +∞ A V
8 1 7 eqeltri A V