Metamath Proof Explorer


Theorem xnegid

Description: Extended real version of negid . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegid A * A + 𝑒 A = 0

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 rexneg A A = A
3 2 oveq2d A A + 𝑒 A = A + 𝑒 A
4 renegcl A A
5 rexadd A A A + 𝑒 A = A + A
6 4 5 mpdan A A + 𝑒 A = A + A
7 recn A A
8 7 negidd A A + A = 0
9 3 6 8 3eqtrd A A + 𝑒 A = 0
10 id A = +∞ A = +∞
11 xnegeq A = +∞ A = +∞
12 xnegpnf +∞ = −∞
13 11 12 eqtrdi A = +∞ A = −∞
14 10 13 oveq12d A = +∞ A + 𝑒 A = +∞ + 𝑒 −∞
15 pnfaddmnf +∞ + 𝑒 −∞ = 0
16 14 15 eqtrdi A = +∞ A + 𝑒 A = 0
17 id A = −∞ A = −∞
18 xnegeq A = −∞ A = −∞
19 xnegmnf −∞ = +∞
20 18 19 eqtrdi A = −∞ A = +∞
21 17 20 oveq12d A = −∞ A + 𝑒 A = −∞ + 𝑒 +∞
22 mnfaddpnf −∞ + 𝑒 +∞ = 0
23 21 22 eqtrdi A = −∞ A + 𝑒 A = 0
24 9 16 23 3jaoi A A = +∞ A = −∞ A + 𝑒 A = 0
25 1 24 sylbi A * A + 𝑒 A = 0