Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
xnegnegd
Next ⟩
uzred
Metamath Proof Explorer
Ascii
Unicode
Theorem
xnegnegd
Description:
Extended real version of
negnegd
.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
xnegnegd.1
⊢
φ
→
A
∈
ℝ
*
Assertion
xnegnegd
⊢
φ
→
−
−
A
=
A
Proof
Step
Hyp
Ref
Expression
1
xnegnegd.1
⊢
φ
→
A
∈
ℝ
*
2
xnegneg
⊢
A
∈
ℝ
*
→
−
−
A
=
A
3
1
2
syl
⊢
φ
→
−
−
A
=
A