Metamath Proof Explorer


Theorem xnegnegd

Description: Extended real version of negnegd . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegnegd.1 φ A *
Assertion xnegnegd φ A = A

Proof

Step Hyp Ref Expression
1 xnegnegd.1 φ A *
2 xnegneg A * A = A
3 1 2 syl φ A = A