Metamath Proof Explorer


Theorem xnegnegi

Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegnegi.1 A *
Assertion xnegnegi A = A

Proof

Step Hyp Ref Expression
1 xnegnegi.1 A *
2 xnegneg A * A = A
3 1 2 ax-mp A = A