Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
xnegnegi
Next ⟩
xnegeqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
xnegnegi
Description:
Extended real version of
negneg
.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
xnegnegi.1
⊢
A
∈
ℝ
*
Assertion
xnegnegi
⊢
−
−
A
=
A
Proof
Step
Hyp
Ref
Expression
1
xnegnegi.1
⊢
A
∈
ℝ
*
2
xnegneg
⊢
A
∈
ℝ
*
→
−
−
A
=
A
3
1
2
ax-mp
⊢
−
−
A
=
A