Metamath Proof Explorer


Theorem xnegpnf

Description: Minus +oo . Remark of BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011)

Ref Expression
Assertion xnegpnf +∞ = −∞

Proof

Step Hyp Ref Expression
1 df-xneg +∞ = if +∞ = +∞ −∞ if +∞ = −∞ +∞ +∞
2 eqid +∞ = +∞
3 2 iftruei if +∞ = +∞ −∞ if +∞ = −∞ +∞ +∞ = −∞
4 1 3 eqtri +∞ = −∞